

3D Genome Analysis Identifies Enhancer Hijacking Mechanism for High-Risk Factors in Human T-ALL

Fengling Chen Supervisor: Michael Q. Zhang & Yang Chen

Bioinformatics Division and Center for Synthetic and Systems Biology, Department of Automation, Tsinghua University

2020-12-05

CML and GLIVEC

Chronic myelogenous leukemia (CML) 90% CML patients have BCR-ABL translocation; GLIVEC can turn the five-year survival rate from 30% to 90%.

ETP-ALL

- 1. Block at the earliest stages of T cell differentiation;
- 2. High-risk subtype

Belver et al. Nature Reviews Cancer, 2016

Whole-exome and RNA sequencing analyses of large T-ALL cohorts

- Identification of T-ALL associated mutations and dysregulated genes.
- Non-coding region account for 98% genome, regulatory elements locate in non-coding region.

How alternations of the non-coding region contribute to T-ALL progression?

Motivation of studying T-ALL with 3D genome data

Mechanism of oncogene activation (Hnisz et al. Science, 2016)

3D genome technology is a great tool to detect non-coding alterations and explain the mechanism of oncogene activation.

Experimental design

Prof. Hong Wu

Liang et al. Nature communication, 2018

Dr. Lu Yang

4 Healthy Donors

Paired BL-Hi-C and RNA-seq experiment

Compartment: B-to-A (1.38%) and A-to-B switches (1.59%) TAD boundaries: total: 3421; T-ALL-specific: 377; normal-specific:315 Loops: total: 38464; enhanced: 2330; reduced: 4073

Chromatin structure changes coincide with oncogenic transcription factor aberrant expression

29.4% (996 /3392) of DEGs between normal and T-ALL were associated with consistent 3D genome alterations.

CDK6 is a potential target for T-ALL treatment

These could be the downstream of genetic variation.

Hi-C data reveal massive novel translocations

Hi-C data reveal massive novel translocations

Trans-loops forms between TLX3 and BCL11B enhancers

TLX3 and BCL11B are both import TFs in T cell development.

Characteristics of trans-loops

More DEGs can be found using trans-loops

Trans-loop tends to utilize original REs and CTCF binding sites.

Two HOXA activation mechanism

Translocation-mediated enhancer hijack leads to HOXA13 overexpression

HOXA13 were regulated by CDK6 enhancers via trans-loops.

Translocation-mediated enhancer hijack leads to HOXA13 overexpression

HOXA13 were regulated by BCL11B and ERG enhancers via trans-loops.

Trans-activation of HOXA related sophisticated loops

Trans-activation of HOXA related sophisticated loops

HOXA13 correlates with poor prognosis of pediatric T-ALL

The complete response rates: HOXA13+ (50%) and HOXA13- (92%) groups (p-value = 0.007419)

- 1. Systematically revealed the 3D genome landscape of T-ALL patients.
- 2. Uncovered novel translocations and neo-loops of T-ALL.
- 3. Demonstrated gene dysregulation in T-ALL by trans-activation and enhancer hijacking with HOXA as an example.
- 4. HOXA13 correlates with poor outcome.

Trans-activation of HOXA

Enhancer hijacking of HOXA

Discussion

Driver of subpopulation

Chromatin conformation of T-ALL subpopulation is centered on oncogenic TFs ?

Genome variation ->key TF dysregulation->conformation->expression

Discussion

Acknowledgement

Tsinghua University

Prof. Michael Zhang Yang Chen Minglei Shi

Key Collaborators

Peking University

Prof. Hong Wu Lu Yang Haichuan Zhu Bingjie Dong

Peking University People's Hospital

Xiaojun Huang Zongru Li Yongzhan Zhang Leping Zhang Qian Jiang Yan Chang

National Center for Protein Sciences Beijing

Yan Liu (Tsinghua University) Fei Wang (Peking University) Xuefang Zhang (Peking University)

