

HiCDB: a sensitive and robust method for detecting contact domain boundaries

Fengling Chen Supervisor: Michael Q. Zhang & Yang Chen

MOE Key Laboratory of Bioinformatics Bioinformatics Division and Center for Synthetic and Systems Biology, BNRist Department of Automation, Tsinghua University

14 October 2018

1. Background & Motivation

contact domain boundary (CDB)

Why new CDB detecting methods ?

- existed methods were not fully evaluated.
- · not updated for high resolution
- not robust enough to detect differential CDBs
- not specially designed to better detecting CDBs under highly-connected regions

genome-wide analysis of

epigenetic features of CDBs function of cell-type specific CDBs

contact domain boundaries (CDBs) includes TAD boundaries and sub-TAD boundaries.

TADs: invariant/conserved; absolute insulated

sub-TADs : varied ; cell-type specific gene regulation; relatively insulated

2. HiCDB Method

- ✓ Calculate relative insulation (RI) under different window size $RI(w,s) = \frac{U(w,s) + D(w,s) - B(w,s)}{U(w,s) + D(w,s) + B(w,s)}$
- Peak detection on average RI

$$\overline{RI}(s) = \frac{1}{w_n - w_1} \sum_{w = w_1}^{w_n} RI(w, s)$$

- ✓ Remove background $LRI(s) = \overline{RI}(s) - lower _envelope(lower _envelope(\overline{RI}(s)))$
 - ✓ Cut-off chosen (GSEA-like method)

aRI or LRI can be compared genome-wide aRI or LRI help to find CDBs under highly-connected domains.

3. Compare with other methods

All comparisons were carried on at 40kb-resolution and 10kb-resolution datasets

Consistency between all methods

CTCF/cohesin and active regulatory signal enrich on HiCDB detected CDBs

3. Compare with other methods

Evaluation of uniquely detected CDBs of each methods

HiCDB uniquely detected CDBs are meaningfull.

3. Compare with other methods

comprehensive metrics:

the CDB number, consistency, protein binding enrichment, robustness and time complexity.

4. Epigenetic features of CDBs

CDB enriches structural regulator as well as cell-type-specific TFs

✓ TRIM22 is probably a structural regulator(GM12878 & MCF-7)

4. Epigenetic features of CDBs

CDBs cover more CTCF independent regulatory regions than Hi-C loops detected by HiCCUPS

chr21:42,500,000-46,500,000

4. Epigenetic features of CDBs

The enrichment of CTCF independent loops and cell-type-specific TFs on CDBs strongly suggest that the CDBs are not only structurally but also functionally related to transcription regulation.

5. Differential CDB detection

Emergence of CDBs are frequently associated with the activation of nearby cell-type-specific genes.

- ✓ cell-type-specific CDBs correlate with cell-type-specific histone modifications
- ✓ GM12878-specific CDBs: B cell activation, interferon-gamma-mediated signaling pathway etc.
- ✓ IMR90-specific CDBs: lung development etc.

5. Differential CDB detection

Differential CDB example

Cell-type-specific CDBs correlate with cell-type-specific histone modification and gene activation.

5. Differential CDB detection

Differential CDB example

Cell-type-specific CDBs correlate with cell-type-specific histone modification and gene activation.

6. Applying HiCDB on 21 cell types Tsinghua Universitv

A compendium of chromatin contact maps reveals spatially active regions in the human genome[J]. Schmitt A D, et al. Cell reports, 2016.

CTCF motif is more divergent at invariant CDBs

level 1

level3

0

level4

Ó

50

50

100

100

-50

-50

Take home messages

- 1. HiCDB is fast and sensitive which can be applied to multiple resolution.
- 2. Applying relative insulation, HiCDB is powerful in defining CDBs within highly-connected regions. Relative insulation is associated with gene regulation and histone modification.
- 3. Use HiCDB to find functional structure differences between conditions.
- 4. Refer to our comprehensive comparisons to select boundary detecting tools.

Overview of HiCDB package

Acknowledgement

Dr. Guipeng Li Research Assistant Professor Medi-X Institute, SUSTech

Prof. Michael Q. Zhang Dept of MCB, Center for Systems Biology, UT Dallas, USA TNLIST, Tsinghua University

Dr. Yang Chen Research Assistant Professor TNLIST, Tsinghua University

Michael Q. Zhang Lab @ THU

Thank you!

Fengling Chen 陈凤玲: Ph.D. candidate Email: <u>cfl15@mails.tsinghua.edu.cn</u> <u>fchen@github</u>

2. HiCDB Method

